Volatility Forecasting With Range-Based EGARCH Models
نویسندگان
چکیده
We provide a simple, yet highly effective framework for forecasting return volatility by combining exponential generalized autoregressive conditional heteroscedasticity models with data on the range. Using Standard and Poor’s 500 index data for 1983–2004, we demonstrate the importance of a long-memory specification, based on either a two-factor structure or fractional integration, that allows for some asymmetry between market returns and volatility innovations. Out-of-sample forecasts reinforce the value of both this specification and the use of range data in the estimation. We find substantial forecastability of volatility as far as 1 year from the end of the estimation period, contradicting the return-based conclusions of West and Cho and of Christoffersen and Diebold that predicting volatility is possible only for short horizons.
منابع مشابه
A differential harmony search based hybrid interval type2 fuzzy EGARCH model for stock market volatility prediction
a r t i c l e i n f o a b s t r a c t Keywords: Volatility forecasting Stock markets EGARCH type1 and type2 fuzzy-EGARCH models Functional link neural network Differential harmony search In this paper a new hybrid model integrating an interval type2 fuzzy logic system (IT2FLS) with a computationally efficient functional link artificial neural network (CEFLANN) and an Exponential Generalized Aut...
متن کاملForecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملForecasting the Stock Return Distribution Using Macro-Finance Variables
This paper proposes a new method to forecast S&P 500 return distribution by combining quantile regression models using macro-finance variables with volatility-based models including various standard EGARCH and stochastic volatility specifications. 30 density forecasting models are compared and combined in an out-of-sample forecasting exercise. Using macro-finance variables is found to help subs...
متن کاملThe Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملModeling Gold Volatility: Realized GARCH Approach
F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...
متن کامل